Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{\sin x-2 \sin 3 x+\sin 5 x}{x}$
To Find: Limits
NOTE: First Check the form of imit. Used this method if the limit is satisfying any one from 7 indeterminate form.
In this Case, inderterminate Form is $\frac{0}{0}$
Formula used: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
So $\lim _{x \rightarrow 0} \frac{\sin x-2 \sin 3 x+\sin 5 x}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}-\frac{2 \sin 3 x}{x}+\frac{\sin 5 x}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}-\frac{2 \sin 3 x}{3 x} \times 3+\frac{5 \sin 5 x}{5 x}\right)$
By using the above formula, we have
$\therefore \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}-\frac{2 \sin 3 x}{3 x} \times 3+\frac{5 \sin 5 x}{5 x}\right)=1-2 \times 3+5=0$
Therefore, $\lim _{x \rightarrow 0} \frac{\sin x-2 \sin 3 x+\sin 5 x}{x}=0$