Question:
Evaluate the following limits:
$\lim _{x \rightarrow a} \frac{(\sin x-\sin a)}{(\sqrt{x}-\sqrt{a})}$
Solution:
$=\lim _{x \rightarrow a} \frac{(\sin x-\sin a)}{(\sqrt{x}-\sqrt{a})}$
$=\lim _{x \rightarrow a} \frac{(\sin x-\sin a)}{(\sqrt{x}-\sqrt{a})} \times \frac{(\sqrt{x}+\sqrt{a})}{(\sqrt{x}+\sqrt{a})}[$ Multiply and divide by $\sqrt{x}-\sqrt{a}]$
$=\lim _{x \rightarrow a} \frac{(\sin x-\sin a) \times(\sqrt{x}+\sqrt{a})}{(x-a)}$
$=\cos a \times \lim _{x \rightarrow a}(\sqrt{x}+\sqrt{a})\left[\because \lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}=\cos a\right]$
$=2 \sqrt{a} \times \cos a$
$=2 \sqrt{a c o s a}$
$\therefore \lim _{x \rightarrow a} \frac{(\sin x-\sin a)}{(\sqrt{x}-\sqrt{a})}=2 \sqrt{a} \cos a$