Question:
Evaluate the following limits:
$\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$
Solution:
$=\lim _{x \rightarrow 0}(\csc x-\cot x)$
$=\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{\cos x}{\sin x}\right)$
$=\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{\sin x}\right)$
$=\lim _{x \rightarrow 0}\left(\frac{2 \times \sin \frac{x}{2} \times \sin \frac{x}{2}}{2 \times \sin \frac{x}{2} \times \cos \frac{x}{2}}\right)[\because 1-\cos \theta=2 \sin \theta \times \sin \theta]$
$=\lim _{x \rightarrow 0}\left(\tan \frac{x}{2}\right)$
$=0$
$\therefore \lim _{x \rightarrow 0}(\csc x-\cot x)=0$