Question:
Evaluate the following limits:
$\lim _{x \rightarrow a} \frac{\cos x-\cos a}{\cot x-\cot a}$
Solution:
$=\lim _{x \rightarrow a} \frac{\cos x-\cos a}{\cot x-\cot a}$
$=\lim _{x \rightarrow a} \frac{(\cos x-\cos a)}{\frac{\sin (a-x)}{\sin x \sin a}}$
$=\sin a \times \lim _{x \rightarrow a} \frac{\sin \left(\frac{x+a}{2}\right) \times \sin x}{\cos \left(\frac{x-a}{2}\right)}$
$=\sin ^{3} a$
$\therefore \lim _{x \rightarrow a} \frac{\cos x-\cos a}{\cot x-\cot a}=\sin a \times \sin a \times \sin a$