Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{\left(x^{2}-\tan 2 x\right)}{\tan x}$
To Find: Limits
NOTE: First Check the form of imit. Used this method if the limit is satisfying any one from 7 indeterminate form.
In this Case, indeterminate Form is $\frac{0}{0}$
Formula used: $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$ or we can used $L$ hospital Rule,
So, by using the above formula, we have
Divide numerator and denominator by $x$,
$\lim _{x \rightarrow 0} \frac{x^{2}-\tan 2 x}{\tan x}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}-\tan 2 x}{x}}{\frac{\tan x}{x}}=\lim _{x \rightarrow 0} \frac{x-\frac{\tan 2 x}{x}}{\frac{\tan x}{x}}=\lim _{x \rightarrow 0} \frac{x-\frac{2 \tan 2 x}{2 x}}{\frac{\tan x}{x}}=\frac{0-2}{1}=-2$
Therefore, $\lim _{x \rightarrow 0} \frac{x^{2}-\tan 2 x}{\tan x}=-2$