Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{(\sin 3 x+\sin 5 x)}{(\sin 6 x-\sin 4 x)}$
$=\lim _{x \rightarrow 0} \frac{\left(2 \times \sin \frac{3 x+5 x}{2} \times \cos \frac{3 x-5 x}{2}\right)}{\left(2 \times \cos \frac{6 x+4 x}{2} \sin \frac{6 x-4 x}{2}\right)}$
$=\lim _{x \rightarrow 0} \frac{\sin 4 x \cos x}{\cos 5 x \sin x}$
$=\lim _{x \rightarrow 0} \frac{\sin 4 x}{\cos 5 x \times \frac{\sin x}{\cos x}} \times \frac{4 x}{4 x}$
$=4 \times \lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x} \times \frac{1}{\cos 5 x} \times \frac{x}{\tan x}\left[\begin{array}{l}\because \lim _{x \rightarrow 0} \frac{\sin \theta}{\theta}=1 \\ \lim _{x \rightarrow 0} \frac{\theta}{\tan \theta}=1\end{array}\right]$
$=4$
$\therefore \lim _{x \rightarrow 0} \frac{(\sin 3 x+\sin 5 x)}{(\sin 6 x-\sin 4 x)}=4$