Evaluate the following limits

Question:

Evaluate the following limits

$\lim _{x \rightarrow 0} \frac{\tan \alpha x}{\tan \beta x}$

 

Solution:

To Find: Limits

NOTE: First Check the form of imit. Used this method if the limit is satisfied any one from 7 indeterminate form.

In this Case, indeterminate Form is $\frac{0}{0}$

Formula used: $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$.

So $\lim _{x \rightarrow 0} \frac{\tan \alpha x}{\tan \beta x}=\lim _{x \rightarrow 0}\left(\frac{\tan \alpha x}{\alpha x}\right) \times \frac{\beta x}{\sin \beta x} \times \frac{\alpha x}{\beta x}=\frac{\alpha x}{\beta x}=\frac{\alpha}{\beta}$

Therefore, $\lim _{x \rightarrow 0} \frac{\tan \alpha x}{\tan \beta x}=\frac{\alpha}{\beta}$

 

Leave a comment