Question:
Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{\left(e^{\tan x}-1\right)}{x}$
Solution:
$=\lim _{x \rightarrow 0} \frac{e^{\tan x}-1}{x}$
$=\lim _{x \rightarrow 0} \frac{e^{\tan x}-1}{x} \times \frac{\tan x}{\tan x}$
$=\lim _{x \rightarrow 0} \frac{e^{\tan x}-1}{\tan x} \times \frac{\tan x}{x}$
$=1 \times 1$
$=1$
$\therefore \lim _{x \rightarrow 0} \frac{e^{\tan x}-1}{x}=1$