Question:
Evaluate the following limits:
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}$
Solution:
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}$
As $x$ tends to $\pi / 2, x-\pi / 2$ tends to zero.
Let,
$\mathrm{y}=\mathrm{x}-\frac{\pi}{2}$
$=\lim _{y \rightarrow 0} \frac{\tan \left(2 y+\frac{\pi}{2} \times 2\right)}{y}$
$=\lim _{y \rightarrow 0} \frac{\tan (\pi+2 y)}{y}$
$=\lim _{y \rightarrow 0} \frac{\tan 2 y}{2 y} \times 2$
$=2$
$\therefore \lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}=2$