Question:
Evaluate the following integrals:
$\int \frac{1}{e^{x}+1} d x$
Solution:
First of all, take $e^{x}$ common from the denominator, so we get
$\Rightarrow \int \frac{1}{e^{x}\left(\frac{1}{e^{x}}+1\right)} \cdot d x$
$\Rightarrow \int \frac{1 \cdot e^{-x}}{e^{-x}+1} d x$
Assume $e^{-x}+1=t$
$d\left(e^{-x}+1\right)=d t$c
$\Rightarrow-e^{-x} d x=d t$
$\Rightarrow e^{-x} d x=-d t$
Substituting $t$ and dt we get
$\Rightarrow \int \frac{-\mathrm{dt}}{\mathrm{t}}$
$\Rightarrow \ln |\mathrm{t}|+\mathrm{c}$
But $\mathrm{t}=\left(\mathrm{e}^{-\mathrm{x}}+1\right)$
$\Rightarrow \ln \left|e^{-x}+1\right|+c$