Question:
Evaluate the following integrals:
$\int 4 x^{3} \sqrt{5-x^{2}} d x$
Solution:
Assume $5-x^{2}=t^{2}$
$d\left(5-x^{2}\right)=d\left(t^{2}\right)$
$-2 x \cdot d x=2 t \cdot d t$
$\Rightarrow x d x=-t . d x$
$\Rightarrow \mathrm{dx}=\frac{-\mathrm{t}}{\mathrm{x}} \mathrm{dt}$
Substituting $t$ and $d t$
$\Rightarrow \int 4 x^{3} \sqrt{t^{2}} \frac{-t}{x} d t$
$\Rightarrow 4 \int x^{2} t^{2}$
$\Rightarrow x^{2}=5-t^{2}$
$\Rightarrow 4 \int\left(5-t^{2}\right) t^{2} \cdot d t$
$\Rightarrow 20 \int \mathrm{t}^{2} \mathrm{dt}-4 \int \mathrm{t}^{4} \mathrm{dt}$
$\Rightarrow 20 \times \frac{t^{3}}{3}-4 \frac{t^{5}}{5}+c$
$\Rightarrow 20\left(5-x^{2}\right)^{3 \backslash 2}-\frac{4}{5}\left(5-x^{2}\right)^{5 \backslash 2}+c$