Evaluate $\int x^{2} \tan ^{-1} x d x$
$\int x^{2} \tan ^{-1} x d x$
Here we will use integration by parts,
$\int u \cdot d v=u v-\int v d u$
Choose $u$ in these oder LIATE(L-LOGS,I-INVERSE,A-ALGEBRAIC,T-TRIG,E-EXPONENTIAL)
So here, $u=\tan ^{-1} x$
$=\tan ^{-1} x \int x^{2} d x-\frac{1}{3} \int x^{3}\left(d\left(\tan ^{-1} x\right)\right) /$
$d x+c$
$\left.\int x^{2} d x=\left(\frac{x^{3}}{3}\right)+c\right)$
$=\left(\frac{x^{3}}{3}\right) \tan ^{-1} x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x$
Putting $1+x^{2}=t$,
$2 x d x=d t$
$x d x=\frac{d t}{2}$
$=\left(\frac{x^{3}}{3}\right) \tan ^{-1} x-\frac{1}{3} \int \frac{x x^{2}}{1+x^{2}} d x$
$=\left(\frac{x^{3}}{3}\right) \tan ^{-1} x-\frac{1}{3} \int \frac{(t-1)}{t} \frac{d t}{2}$
$=\left(\frac{x^{3}}{3}\right) \tan ^{-1} x-\frac{1}{6} \int \frac{(t-1)}{t} d t$
$=\left(\frac{x^{3}}{3}\right) \tan ^{-1} x-\frac{1}{6}\left[\int 1 d t-\int \frac{1}{t} d t\right]$
$=\left(\frac{x^{3}}{3}\right) \tan ^{-1} x-\frac{1}{6}[-\log t+t]+c$
Resubstituting $\mathrm{t}$
$=\left(\frac{x^{3}}{3}\right) \tan ^{-1} x-\frac{1}{6}\left[-\log \left(1+x^{2}\right)+\left(1+x^{2}\right)\right]+c$