Question:
Evaluate the following integrals:
$\int \sqrt{\tan x} \sec ^{4} x d x$
Solution:
Let $I=\int \sqrt{\tan x} \sec ^{4} x d x$
$\Rightarrow I=\int \sqrt{\tan x} \sec ^{2} x \sec ^{2} x d x$
$\Rightarrow I=\int \sqrt{\tan x}\left(1+\tan ^{2} x\right) \sec ^{2} x d x$
$\Rightarrow I=\int\left(\tan ^{\frac{1}{2}} x+\tan ^{\frac{5}{2}} x\right) \sec ^{2} x d x$
Let $\tan x=t$, then
$\Rightarrow \sec ^{2} x d x=d t$
$\Rightarrow I=\int\left(t^{\frac{1}{2}}+t^{\frac{5}{2}}\right) d t$
$\Rightarrow I=\frac{2}{3} t \overline{2}+\frac{2}{7} t \frac{7}{2}+c$
$\Rightarrow I=\frac{2}{3} \tan \frac{3}{2} x+\frac{2}{7} \tan ^{\frac{7}{2}} x+c$
Therefore, $\int \sqrt{\tan x} \sec ^{4} x d x=\frac{2}{3} \tan ^{\frac{3}{2}} x+\frac{2}{7} \tan ^{\frac{7}{2}} x+c$