Question:
Evaluate the following integrals:
Solution:
Assume $\tan ^{-1} x=t$
$d\left(\tan ^{-1} x\right)=d t$
$\Rightarrow \frac{1}{1+x^{2}} d x=d t$
Substituting $\mathrm{t}$ and $\mathrm{dt}$ in above equation we get
$\Rightarrow \int \frac{1}{\sqrt{t}} \mathrm{dt}$
$\Rightarrow \int \mathrm{t}^{-1 \backslash 2} \cdot \mathrm{dt}$
$\Rightarrow 2 \mathrm{t}^{1 \backslash 2}+\mathrm{c}$
But $\mathrm{t}=\tan ^{-1}{ }_{\mathrm{x}}$
$\Rightarrow 2\left(\tan ^{-1} x\right)^{1 / 2}+c$