Question:
Evaluate the following integrals:
$\int \frac{1}{x^{2}} \cos ^{2}\left(\frac{1}{x}\right) d x$
Solution:
Assume $\frac{1}{x}=t$
$\Rightarrow \frac{1}{\mathrm{x}^{2}} \mathrm{dx}=\mathrm{dt}$
Substituting $t$ and dt we get
$\Rightarrow \int \cos ^{2} t d t$
$\therefore$ The given equation becomes,
$\Rightarrow \int \frac{1-\cos 2 t}{2} \mathrm{dx}$
We know $\int \cos a x d x=\frac{1}{a} \sin a x+c$
$\Rightarrow \frac{1}{2} \int \mathrm{d} x t-\frac{1}{2} \int \cos (2 t) d t$
$\Rightarrow \frac{t}{2}-\frac{1}{4} \sin (t)+c$
But $\frac{1}{x}=t$
$\Rightarrow \frac{1}{2 x}-\frac{1}{4} \sin \left(\frac{1}{x}\right)+c$