Question:
Evaluate the following integrals:
$\int \frac{1+\cot x}{x+\log \sin x} d x$
Solution:
Assume $x+\log (\sin x)=t$
$d(x+\log (\sin x))=d t$
$1+\frac{\cos x}{\sin x} d x=d t$
$(1+\cot ) d x=d t$
Put $t$ and $d t$ in given equation we get
$\Rightarrow \int \frac{\mathrm{d} t}{t}$
$=\ln |t|+c$
But $t=x+\log (\sin x)$
$=\ln |x+\log (\sin x)|+c$