Question:
Evaluate the following integrals:
$\int \frac{\log x}{x} d x$
Solution:
Assume $\log x=t$
$\Rightarrow \mathrm{d}(\log \mathrm{x})=\mathrm{dt}$
$\Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
Substituting $t$ and dt in above equation we get
$\Rightarrow \int t . d t$
$\Rightarrow \frac{t^{2}}{2}+c$
But $t=\log (x)$
$\Rightarrow \frac{\log ^{2} x}{2}+C$