Evaluate the following integrals:
$\int \frac{6 x-5}{\sqrt{3 x^{2}-5 x+1}} d x$
Given $I=\int \frac{6 x-5}{\sqrt{3 x^{2}-5 x+1}} d x$
Integral is of form $\int \frac{\mathrm{px}+\mathrm{q}}{\sqrt{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}}} \mathrm{dx}$
Writing numerator as $\mathrm{px}+\mathrm{q}=\lambda\left\{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)\right\}+\mu$
$\Rightarrow p x+q=\lambda(2 a x+b)+\mu$
$\Rightarrow 6 x-5=\lambda(6 x-5)+\mu$
$\therefore \lambda=1$ and $\mu=0$
Let $u=3 x^{2}-5 x+1 \rightarrow d x=\frac{1}{6 x-5} d u$
$\Rightarrow \int \frac{6 x-5}{\sqrt{3 x^{2}-5 x+1}} d x=\int \frac{1}{\sqrt{u}} d u$
We know that $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
$=2 \sqrt{3 x^{2}-5 x+1}+c$
$\therefore I=\int \frac{6 x-5}{\sqrt{3 x^{2}-5 x+1}} d x=2 \sqrt{3 x^{2}-5 x+1}+c$