Question:
Evaluate the following integrals:
$\int e^{x} \frac{x-1}{(x+1)^{3}} d x$
Solution:
Let $I=\int e^{x} \frac{x+1-2}{(x+1)^{2}} d x$
$=\int e^{x}\left\{\frac{1}{(x+1)^{2}}+\frac{-2}{(x+1)^{2}}\right\} d x$
$=\int e^{x} \frac{1}{(x+1)^{2}} d x+\int e^{x} \frac{-2}{(x+1)^{2}} d x$'
Integrating by parts
$=e^{x} \frac{1}{(x+1)^{2}}-\int e^{x} \frac{-2}{(x+1)^{2}}+\int e^{x} \frac{-2}{(x+1)^{2}}$
$=e^{x} \frac{1}{(x+1)^{2}}+c$