Question:
Evaluate the following integrals:
$\int x^{n} \log x d x$
Solution:
Let $I=\int x^{n} \log x d x$
Using integration by parts,
$I=\log x \int x^{n} d x-\int \frac{d}{d x} \log x \int x^{n} d x$
We know that,
$\int x^{n} d x=\frac{x^{n+1}}{n+1}$ and $\frac{d}{d x} \log x=\frac{1}{x}$
$=\log x \frac{x^{n+1}}{n+1}-\int \frac{1}{x} \times \frac{x^{n+1}}{n+1} d x$
$=\log x \frac{x^{n+1}}{n+1}-\int \frac{x^{n}}{n+1} d x$
$=\log x \frac{x^{n+1}}{n+1}-\frac{1}{n+1}\left[\int x^{n} d x\right]$
We know that,
$\int x^{n} d x=\frac{x^{n+1}}{n+1}$
$=\log x \frac{x^{n+1}}{n+1}-\frac{1}{(n+1)^{2}} x^{n+1}+c$