Evaluate the following integrals:
$\int \frac{1}{\cos 2 x+3 \sin ^{2} x} d x$
Given $I=\int \frac{1}{\cos 2 x+3 \sin ^{2} x} d x$
We know that $\cos 2 x=1-2 \sin ^{2} x$
$\Rightarrow \int \frac{1}{\cos 2 x+3 \sin ^{2} x} d x=\int \frac{1}{1-2 \sin ^{2} x+3 \sin ^{2} x} d x$
$=\int \frac{1}{1+\sin ^{2} x} d x$
Dividing numerator and denominator by $\cos ^{2} x$,
$\Rightarrow \int \frac{1}{1+\sin ^{2} x} d x=\int \frac{\sec ^{2} x}{\sec ^{2} x+\tan ^{2} x} d x$
Replacing $\sec ^{2} x$ in denominator by $1+\tan ^{2} x$
$\Rightarrow \int \frac{\sec ^{2} x}{\sec ^{2} x+\tan ^{2} x} d x=\int \frac{\sec ^{2} x}{1+2 \tan ^{2} x} d x$
Putting $\tan x=t$ so that $\sec ^{2} x d x=d t$,
$\Rightarrow \int \frac{\sec ^{2} x}{1+2 \tan ^{2} x} d x=\int \frac{d t}{1+2 t^{2}}$
$=\frac{1}{2} \int \frac{1}{\frac{1}{2}+t^{2}} d t$
We know that $\int \frac{1}{\mathrm{a}^{2}+\mathrm{x}^{2}} \mathrm{dx}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{c}$
$\Rightarrow \frac{1}{2} \int \frac{1}{\frac{1}{2}+t^{2}} d t=\frac{1}{2} \times \frac{1}{\frac{1}{\sqrt{2}}} \tan ^{-1}\left(\frac{t}{\frac{1}{\sqrt{2}}}\right)+c$
$=\frac{1}{\sqrt{2}} \tan ^{-1}(\sqrt{2} \tan x)+c$
$\therefore \mathrm{I}=\int \frac{1}{\cos 2 \mathrm{x}+3 \sin ^{2} \mathrm{x}} \mathrm{dx}=\frac{1}{\sqrt{2}} \tan ^{-1}(\sqrt{2} \tan \mathrm{x})+\mathrm{c}$