Question:
Evaluate the following integrals:
$\int \frac{e^{x-1}+x^{e-1}}{e^{x}+x^{e}} d x$
Solution:
Multiplying and dividing the numerator by e we get the given as
$\Rightarrow \frac{1}{e} \int \frac{e^{x}+e x^{e-1}}{e^{x}+x^{e}} d x \ldots$ (1)
Assume $e^{x}+x^{e}=t$
$\Rightarrow d\left(e^{x}+x^{e}\right)=d t$
$\Rightarrow e^{x}+e x^{e-1}=d t$
Substituting $\mathrm{t}$ and dt in equation 1 we get
$\Rightarrow \frac{1}{\mathrm{e}} \int \frac{\mathrm{d} t}{t}$
$=\ln |t|+c$
But $t=e^{x}+x^{e}$
$\therefore \ln \left|e^{x}+x^{e}\right|+c$