Question:
Evaluate the following integrals:
$\int 5^{5^{5^{x}}} 5^{5^{x}} 5^{x} d x$
Solution:
Assume $5^{5^{5^{x}}}=t$
$\Rightarrow \mathrm{d}\left(5^{5^{5^{x}}}\right)=\mathrm{dt}$
$\Rightarrow 5^{5^{x}} \cdot 5^{5^{x}} 5^{x}\left(\log 5^{3}\right) d x=d t$
Substituting $t$ and $d t$
$\Rightarrow 5^{5^{5^{x}}} \cdot 5^{5^{x}} 5^{x} \cdot d x=\frac{d t}{\left(\log 5^{3}\right)}$
$\Rightarrow \int \frac{d t}{\left(\log 5^{2}\right)}$
$\Rightarrow \frac{1}{\left(\log 5^{3}\right)} \int \mathrm{dt}+\mathrm{c}$
$\Rightarrow \frac{t}{\left(\log 5^{3}\right)}+c$
But $t=5^{5^{5^{x}}}$
$\Rightarrow \frac{5^{5^{x^{x}}}}{\left(\log 5^{2}\right)}+c$