Evaluate the following integrals:

Question:

Evaluate the following integrals:

$\int x^{3} \cos x^{4} d x$

Solution:

Assume $x^{4}=t$

$d\left(x^{4}\right)=d t$

$4 x^{3} d x=d t$

$x^{3} d x=\frac{d t}{4}$

Substituting $t$ and $d t$

$\Rightarrow \int \frac{1}{4} \cos t d t$

$\Rightarrow \frac{1 \sin t}{4}+c$

But $t=x^{4}$

$\Rightarrow \frac{1}{4} \sin x^{4}+c$

Leave a comment