Evaluate the following integrals:
$\int\left\{x^{2}+e^{\log x}+\left(\frac{e}{2}\right)^{x}\right\} d x$
Given:
$\int\left\{x^{2}+e^{\log x}+\left(\frac{e}{2}\right)^{x}\right\} d x$
By Splitting, we get,
$\Rightarrow \int x^{2} d x+\int e^{\log x} d x+\int\left(\frac{e}{2}\right)^{x} d x$
By applying formula,
$\int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}$
$\Rightarrow \frac{x^{2+1}}{2+1}+\int e^{\log _{e} x} d x+\int\left(\frac{e}{2}\right)^{x} d x$
$\Rightarrow \frac{x^{3}}{3}+\int x d x+\frac{1}{\log \left(\frac{e}{2}\right)} \log \left(\frac{e}{2}\right)^{x}$
$\Rightarrow \frac{x^{3}}{3}+\int x d x+\frac{1}{\log \left(\frac{e}{2}\right)} \log \left(\frac{e}{2}\right)^{x}$
$\Rightarrow \frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{1}{\log \left(\frac{e}{2}\right)} \log \left(\frac{e}{2}\right)^{x}+c$