Question:
Evaluate $\int \tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x$
Solution:
Put $x=\cos 2 t ; d x=-2 \sin 2 t$
$=\int \tan ^{-1} \sqrt{\frac{1-x}{1+x}} \mathrm{~d} x=\int \tan ^{-1} \sqrt{\frac{1-\cos 2 t}{1+\cos 2 t}}(-2 \sin 2 t) d t$
$=\int \tan ^{-1} \sqrt{\frac{1-\cos 2 t}{1+\cos 2 t}}(-2 \sin 2 t) d t$
$=-2 \int \tan ^{-1} t \tan t \sin 2 t d t$
$=-2 \int t \sin 2 t d t$
$=-2\left[-\frac{t \cos 2 t}{2}+\frac{1}{2} \int \cos 2 t d t\right]$
$=t \cos 2 t-\frac{\sin 2 t}{2}+c$
$=\frac{x \cos ^{-1} x}{2}-\frac{\sqrt{1-x^{2}}}{2}+c$