Question:
Evaluate the following integrals:
$\int \frac{1}{1-\cos 2 x} d x$
Solution:
Let $I=\int \frac{1}{1-\cos 2 x} d x$
We know $\cos 2 \theta=1-2 \sin ^{2} \theta$
Hence, in the denominator, we can write $1-\cos 2 x=2 \sin ^{2} x$
Therefore, we can write the integral as
$I=\int \frac{1}{2 \sin ^{2} x} d x$
$\Rightarrow I=\frac{1}{2} \int \frac{1}{\sin ^{2} x} d x$
$\Rightarrow I=\frac{1}{2} \int \operatorname{cosec}^{2} x d x$
Recall $\int \operatorname{cosec}^{2} x d x=-\cot x+c$
$\Rightarrow \mathrm{I}=\frac{1}{2}(-\cot \mathrm{x})+\mathrm{c}$
$\therefore I=-\frac{1}{2} \cot x+c$
Thus, $\int \frac{1}{1-\cos 2 x} d x=-\frac{1}{2} \cot x+c$