Question:
Evaluate the following integrals:
$\int \sqrt[3]{\cos ^{2} x} \sin x d x$
Solution:
Assume $\cos x=t$
$\Rightarrow \mathrm{d}(\cos x)=\mathrm{dt}$
$\Rightarrow-\sin x \mathrm{~d} x=\mathrm{dt}$
$\Rightarrow \mathrm{dx}=\frac{-\mathrm{dt}}{\sin \mathrm{x}}$
$\therefore$ Substituting $t$ and $d t$ in the given equation we get
$\Rightarrow \int \sqrt[3]{t^{2}} \sin x \cdot \frac{d t}{\sin x}$
$\Rightarrow \int t^{3 / 2} \cdot d t$
$\Rightarrow \frac{2 t^{\frac{3}{2}}}{3}+c$
But $\cos x=t$
$\Rightarrow \frac{2(\cos x)^{3 / 2}}{3}+c$