Question:
Evaluate the following integrals:
$\int \sec ^{6} x \tan x d x$
Solution:
Let $\mathrm{I}=\int \sec ^{6} \mathrm{x} \tan \mathrm{x} \mathrm{dx}$
$\Rightarrow I=\int \sec ^{5} x(\sec x \tan x) d x$
Substituting, $\sec x=t \Rightarrow \sec x \tan x d x=d t$
$\Rightarrow I=\int t^{5} d t$
$\Rightarrow I=\frac{t^{6}}{6}+c$
$\Rightarrow I=\frac{\sec ^{6} x}{6}+c$
Therefore, $\int \sec ^{5} x(\sec x \tan x) d x=\frac{\sec ^{6} x}{6}+c$