Question:
Evaluate the following integrals:
$\int e^{x}(\tan x-\log \cos x) d x$
Solution:
Let $I=\int e^{x}(\tan x-\log \cos x) d x$
$I=\int e^{x} \tan x d x-\int e^{x} \log \cos x d x$
Integrating by parts,
$=\int e^{x} \tan x d x-\left\{e^{x} \log \cos x-\int e^{x}\left(\frac{d}{d x} \log \cos x\right) d x\right.$
$=\int e^{x} \tan x d x-e^{x} \log \cos x d x-\int e^{x} \tan x d x$
$=-e^{x} \log \cos x d x+c$
$=e^{x} \log \sec x+c$