Question:
Evaluate the following integrals:
$\int \frac{1}{\sqrt{x}+x} d x$
Solution:
$x=t^{2}$
$d(x)=2 t \cdot d t$
$d x=2 t \cdot d t$
Substituting $t$ and dt we get
$\Rightarrow \int \frac{2 t \cdot d t}{t^{2}+t}$
$\Rightarrow 2 \int \frac{t \cdot d t}{t^{2}+t}$
$\Rightarrow 2 \int \frac{1}{1+t} d t$
$\Rightarrow 2(\ln |1+t|)$
But $t=\sqrt{x}$
$\Rightarrow 2(\ln |1+\sqrt{x}|)+c$