Question:
Evaluate the following integrals:
$\int \tan x \sec ^{2} x \sqrt{1-\tan ^{2} x} d x$
Solution:
Assume $1-\tan ^{2} x=t$
$d\left(1-\tan ^{2} x\right)=d t$
$2 \cdot \tan x \cdot \sec ^{2} x d x=d t$
Substituting $t$ and dt we get
$\Rightarrow \Rightarrow \int \frac{1}{2} \sqrt{t} \mathrm{dt}$
$\Rightarrow \int \frac{1}{2} t^{1} / 2 \cdot d t$
$\Rightarrow \frac{4 t^{\frac{3}{2}}}{6}+c$
But $t=1-\tan ^{2} x$
$\Rightarrow \frac{-2\left(1-\tan ^{2} x\right)^{3 / 2}}{3}+c$