Question:
Evaluate the following integrals:
$\int \frac{e^{3 x}}{e^{3 x}+1} d x$
Solution:
Assume $e^{3 x}+1=t$
$\Rightarrow \mathrm{d}\left(\mathrm{e}^{3 \mathrm{x}}+1\right)=\mathrm{dt}$
$\Rightarrow 3 \mathrm{e}^{3 \mathrm{x}}=\mathrm{dt}$
$\Rightarrow \mathrm{e}^{3 \mathrm{x}}=\frac{\mathrm{dt}}{3}$
Substituting $t$ and dt in the given equation we get
$\Rightarrow \int \frac{\mathrm{dt}}{3 \mathrm{t}}$
$\Rightarrow \frac{1}{3} \int \frac{\mathrm{dt}}{\mathrm{t}}$
$\Rightarrow \frac{1}{3} \ln |\mathrm{t}|+\mathrm{c}$
But $t=e^{3 x}+1$
$\therefore$ The above equation becomes
$\Rightarrow \frac{1}{3} \ln \left|e^{3 x}+1\right|+c$