Question:
Evaluate the following integrals:]
$\int\left(x^{e}+e^{x}+e^{e}\right) d x$
Solution:
Given:
$\int\left(x^{e}+e^{x}+e^{e}\right) d x$
By Splitting, we get,
$\Rightarrow \int x^{e} d x+\int e^{x} d x+\int e^{e} d x$
By using the formula,
$\int x^{n} d x=\frac{x^{n+1}}{n+1}$
$\Rightarrow \frac{x^{e+1}}{e+1}+\int e^{x} d x+\int e^{e} d x$
By applying the formula,
$\int a^{x} d x=\frac{a^{x}}{\log a}$
$\Rightarrow \frac{x^{e+1}}{e+1}+\frac{e^{x}}{\log _{e} e}+\int e^{e} d x$
We know that,
$\int \mathrm{kdx}=\mathrm{kx}+\mathrm{c}$
$\Rightarrow \frac{x^{e+1}}{e+1}+\frac{e^{x}}{\log _{e} e}+e^{e} x+c$
$\Rightarrow \frac{x^{e+1}}{e+1}+\frac{e^{x}}{\log _{e} e}+e^{e} x+c$