Evaluate the following integrals:
$\int \frac{1}{\sqrt{1+\cos x}} d x$
In the given equation
$\cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}$
Also, $\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}=1$
Substituting in the above equation we get,
$\Rightarrow \int \frac{1}{\sqrt{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)}} d x$
$\Rightarrow \int \frac{1}{\sqrt{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}} d x$
$\Rightarrow \int \frac{1}{\sqrt{2 \cos ^{2} \frac{x}{2}}} d x$
$\Rightarrow \int \frac{1}{\sqrt{2} \cos \frac{x}{2}} d x$
$\Rightarrow \frac{1}{\sqrt{2}} \int \sec \frac{x}{2} d x$
$\Rightarrow \frac{1}{\sqrt{2}} \ln \left|\sec \frac{x}{2}+\tan \frac{x}{2}\right|+c$