Question:
Evaluate the following integrals:
$\int \frac{1}{\sqrt{7-6 x-x^{2}}} d x$
Solution:
$7-6 x-x^{2}$ can be written as $7-\left(x^{2}+6 x+9-9\right)$
Therefore
$7-\left(x^{2}+6 x+9-9\right)$
$=16-\left(x^{2}+6 x+9\right)$
$=16-(x+3)^{2}$
$=(4)^{2}-(x+3)^{2}$
$\int \frac{1}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x$
Let $x+3=t$
$\mathrm{d} \mathrm{x}=\mathrm{dt}$
$\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(t)^{2}}} d t$
$=\sin ^{-1}\left(\frac{t}{4}\right)+c$
$=\sin ^{-1}\left(\frac{x+3}{4}\right)+c$