Question:
Evaluate the following integrals:
$\int\left(\operatorname{se}^{2} x+\operatorname{cosec}^{2} x\right) d x$
Solution:
Given:
By Splitting, we get,
$\Rightarrow \int \sec ^{2} x d x+\int \operatorname{cosec}^{2} x d x$
By applying the formula,
$\int \sec ^{2} x d x=\tan x$
$\int \operatorname{codec}^{2} x d x=-\operatorname{cotx}$
$\Rightarrow \tan x-\cot x+c$