Question:
Evaluate the following integrals:
$\int \frac{\tan x}{\sqrt{\cos x}} d x$
Solution:
We know $d(\cos x)=\sin x$, and $\tan$ can be written interms of $\cos$ and $\sin$
$\therefore \tan x=\frac{\sin x}{\cos x}$
$\therefore$ The given equation can be written as
$\Rightarrow \int \frac{\sin x}{\cos x \sqrt{\cos x}} d x$
$\Rightarrow \int \frac{\sin x}{\cos ^{3} \backslash^{2} x} d x$
Now assume $\cos x=t$
$d(\cos x)=-d t$
$\sin x d x=-d t$
Substitute values of $\mathrm{t}$ and $\mathrm{dt}$ in above equation
$\Rightarrow \int \frac{-\mathrm{dt}}{\mathrm{t}^{3} / 2}$
$\Rightarrow-\int t^{-3 \backslash 2} d t$
$\Rightarrow 2 t^{-1 \backslash 2}+c$
$\Rightarrow 2 \cos ^{-1 \backslash 2} x+c$
$\Rightarrow \frac{2}{\sqrt{\cos x}}+C$