Question:
Evaluate the following integrals:
$\int \frac{1}{\sqrt{16-6 x-x^{2}}} d x$
Solution:
let I $=\int \frac{1}{\sqrt{16-6 x-x^{2}}} d x$
$=\int \frac{1}{\sqrt{-\left[x^{2}+6 x-16\right]}} d x$
$=\int \frac{1}{\sqrt{-\left[x^{2}+2 x(3)+(3)^{2}-(3)^{2}-16\right]}} d x$
$=\int \frac{1}{\sqrt{-\left[(x-3)^{2}-25\right]}} d x$
$=\int \frac{1}{\sqrt{25-(x+3)^{2}}} d x$
$\operatorname{let}(x+3)=t$
$\mathrm{d} \mathrm{x}=\mathrm{dt}$
$I=\int \frac{1}{\sqrt{5^{2}-t^{2}}} d t$
$=\sin ^{-1}\left(\frac{t}{5}\right)+c$
$I=\sin ^{-1}\left(\frac{x+3}{5}\right)+c$