Evaluate the following integrals:
$\int \frac{\log (\mathrm{x}+2)}{(\mathrm{x}+2)^{2}} \mathrm{~d} \mathrm{x}$
Let I $=\int \frac{\log (x+2)}{(x+2)^{2}} \mathrm{dx}$
$\frac{1}{x+2}=t$
$\frac{-1}{(x+2)^{2}} d x=d t$
$I=-\int \log \left(\frac{1}{t}\right) d t$
Using integration by parts,
$=-\int \log \mathrm{t}^{-1} \mathrm{dt}$
$=-\int 1 \times \log \mathrm{t}^{-1} \mathrm{dt}$
We know that, $\frac{\mathrm{d}}{\mathrm{dt}} \log \mathrm{t}=\frac{1}{\mathrm{t}}$ and $\int \mathrm{dt}=\mathrm{t}$
$I=\log t \int d t-\int\left(\frac{d}{d t} \log t \int d t\right) d t$
$=\log t \int d t-\int\left(\frac{1}{t} \int d t\right) d t$
$=\mathrm{t} \log \mathrm{t}-\int \frac{1}{\mathrm{t}} \times \mathrm{t} \mathrm{dt}$
$=\mathrm{t} \log \mathrm{t}-\mathrm{t}+\mathrm{c}$
Replace the value of $t$,
$=2 e^{\sqrt{x}}(\sqrt{x}-1)+c$