Question:
Evaluate the following integrals:
$\int \frac{x^{-1 / 3}+\sqrt{x}+2}{\sqrt[3]{x}} d x$
Solution:
Given:
$\int \frac{x^{\frac{1}{a}}+\sqrt{x}+2}{\sqrt[3]{x}} d x$
By Splitting them,
$\Rightarrow \int \frac{x^{-\frac{1}{3}}}{\sqrt[2]{x}} d x+\int \frac{\sqrt{x}}{\sqrt[3]{x}} d x+\int \frac{2}{\sqrt[3]{x}} d x$
$\Rightarrow \int x^{-\frac{1}{3}} \times x^{-\frac{1}{3}} d x+\int x^{\frac{1}{2}} \times x^{-\frac{1}{3}} d x+2 \int x^{-\frac{1}{3}} d x$
$\Rightarrow \int x^{-\frac{1}{2}-\frac{1}{3}} d x+\int x^{\frac{1}{2}-\frac{1}{3}} d x+2 \int x^{-\frac{1}{2}} d x$
$\Rightarrow \int x^{-\frac{2}{3}} d x+\int x^{\frac{5}{6}} d x+2 \int x^{-\frac{1}{3}} d x$
By applying the formula,
$\int x^{n} d x=\frac{x^{n+1}}{n+1}$