Question:
Evaluate the following integrals:
$\int \log _{10} x d x$
Solution:
Let $I=\int \log _{10} x d x$
$=\int \frac{\log x}{\log 10} d x$
$=\frac{1}{\log 10} \int 1 \times \log x d x$
Using integration by parts,
$=\frac{1}{\log 10}\left(\log x \int d x-\int \frac{d}{d x} \log x \int 1 d x\right)$
We know that $\frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{x}=\frac{1}{\mathrm{x}}$
$=\frac{1}{\log 10}\left(x \log x-\int \frac{1}{x} x x d x\right)$
$=\frac{1}{\log 10}\left(x \log x-\int d x\right)$
$=\frac{1}{\log 10}(x \log x-x)+c$
$=\frac{x}{\log 10}(1-\log x)+c$