Question:
Evaluate the following integrals:
$\int \frac{1}{\sin x \cos ^{2} x} d x$
Solution:
We know $\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \int \frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos ^{2} x}$
$\Rightarrow \int \frac{\sin ^{2} x}{\sin x \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin x \cos ^{2} x} d x$
$\Rightarrow \int \frac{\sin x}{\cos ^{2} x} d x+\int \frac{1}{\sin x} d x$
$\Rightarrow \int \tan x \sec x d x+\int \csc x d x$
$d(\sec x)=\tan x \cdot \sec x$
$\therefore \int \tan x \sec x d x=\sec x+c$
$\therefore \int \tan x \sec x d x+\int \csc x d x$
$\because \int \csc x d x=\log \left|\tan \frac{x}{2}\right|+c$
$\Rightarrow \sec x+\log \left|\tan \frac{x}{2}\right|+c$