Question:
Evaluate the following integrals:
$\int \frac{a}{b+c e^{x}} d x$
Solution:
First of all take $e^{x}$ common from denominator so we get
$\Rightarrow \int \frac{a}{e^{x}\left(\frac{b}{e^{x}}+c\right)} \cdot d x$
$\Rightarrow \int \frac{a \cdot e^{-x}}{b e^{-x}+c} d x$
Assume be $^{-x}+c=t$
$d\left(b e^{-x}+c\right)=d t$
$\Rightarrow-\mathrm{be}^{-\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \mathrm{e}^{-\mathrm{x}} \mathrm{dx}=\frac{-\mathrm{dt}}{\mathrm{b}}$
Substituting $t$ and dt we get
$\Rightarrow \int \frac{-a d t}{b t}$
$\Rightarrow \frac{-a}{b} \ln |t|+c$
But $t=\left(b e^{-x}+c\right)$
$\Rightarrow \frac{-a}{b} \ln \left|b e^{-x}+c\right|+c$