Question:
Evaluate the following integrals:
$\int \frac{1}{x^{3}} \sin (\log x) d x$
Solution:
Let $I=\int \frac{1}{x^{3}} \sin (\log x) d x$
let $\log \mathrm{x}=\mathrm{t} \Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{x}} \mathrm{dt}$
We know that
$\int e^{2 x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}\{a \sin b x-b \cos b x\}+c$
$\int e^{-2 t} \sin t d t=\frac{e^{-2 t}}{5}\{-2 \sin t-\cos t\}+c$
$I=\frac{x^{-2}}{5}\{-2 \sin (\log x)-\cos (\log x)\}+c$
$=\frac{-1}{5 x^{2}}\{2 \sin (\log x)+\cos (\log x)\}+c$