Evaluate the following integrals:
$\int \cot ^{-1}\left(\frac{\sin 2 x}{1-\cos 2 x}\right) d x$
Let $I=\int \cot ^{-1}\left(\frac{\sin 2 x}{1-\cos 2 x}\right) d x$
We know $\cos 2 \theta=1-2 \sin ^{2} \theta$
Hence, in the denominator, we can write $1-\cos 2 x=2 \sin ^{2} x$
In the numerator, we have $\sin 2 x=2 \sin x \cos x$
Therefore, we can write the integral as
$I=\int \cot ^{-1}\left(\frac{2 \sin x \cos x}{2 \sin ^{2} x}\right) d x$
$\Rightarrow I=\int \cot ^{-1}\left(\frac{\cos x}{\sin x}\right) d x$
$\Rightarrow I=\int \cot ^{-1}(\cot x) d x$
$\Rightarrow I=\int x d x$
Recall $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
$\Rightarrow \mathrm{I}=\frac{\mathrm{x}^{1+1}}{1+1}+\mathrm{c}$
$\therefore \mathrm{I}=\frac{\mathrm{x}^{2}}{2}+\mathrm{c}$
Thus, $\int \cot ^{-1}\left(\frac{\sin 2 x}{1-\cos 2 x}\right) d x=\frac{x^{2}}{2}+c$