Question:
Evaluate the following integrals:
$\int e^{\cos ^{2} x} \sin 2 x d x$
Solution:
Assume $\cos ^{2} x=t$
$d\left(\cos ^{2} x\right)=d t$
$-2 \sin x \cos x d x=d t$
$-\sin 2 x \cdot d x=d t$
Substituting $\mathrm{t}$ and $\mathrm{dt}$
$\Rightarrow \int e^{t} \cdot d t$
$\Rightarrow e^{t}+c$
But $t=\cos ^{2} x$
$\Rightarrow e^{\cos 2 x}+c$