Question:
Evaluate the following integrals:
$\int \frac{\cos 2 x+x+1}{x^{2}+\sin 2 x+2 x} d x$
Solution:
Assume $x^{2}+\sin 2 x+2 x=t$
$d\left(x^{2}+\sin 2 x+2 x\right)=d t$
$(2 x+2 \cos 2 x+2) d x=d t$
$2(x+\cos 2 x+1) d x=d t$
$(x+\cos 2 x+1) d x=\frac{1}{2} d t$
Put $t$ and $d t$ in given equation we get
$\Rightarrow \frac{1}{2} \int \frac{d t}{t}$
$=\frac{1}{2} \ln |t|+c$
But $t=x^{2}+\sin 2 x+2 x$
$=\frac{1}{2} \ln \left|x^{2}+\sin 2 x+2 x\right|+c$