Evaluate the following integrals:
$\int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x$
Expanding $(\cos x+\sin x)^{2}=\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x$
We know $\cos ^{2} x+\sin ^{2} x=1,2 \sin x \cos x=\sin 2 x$
$\therefore(\cos x+\sin x)^{2}=1+\sin 2 x$
$\therefore$ we can write the given equation as
$\Rightarrow \int \frac{\cos 2 x}{1+\sin 2 x} d x$
Assume $1+\sin 2 x=t$
$\Rightarrow \frac{\mathrm{d}(1+\sin 2 \mathrm{x})}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}$
$\Rightarrow 2 \cos 2 \mathrm{x} \mathrm{d} \mathrm{x}=\mathrm{dt}$
$\therefore \cos 2 \mathrm{xd} \mathrm{x}=\frac{\mathrm{dt}}{2}$
Substituting these values in the above equation we get
$\Rightarrow \int \frac{1}{2 t} d t$
$\Rightarrow \frac{1}{2} \ln t+c$
substituting $t=1+2 \sin x$ in above equation
$\Rightarrow \frac{1}{2} \ln (1+2 \sin x)+c$