Question:
Evaluate the following integrals:
$\int \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x$
Solution:
Assume $\sqrt{x}+1=t$
$d(\sqrt{x}+1)=d t$
$\Rightarrow \frac{1}{2 \sqrt{x}} \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \frac{1}{\sqrt{x}} \mathrm{dx}=2 \mathrm{dt}$
Put $\mathrm{t}$ and dt in given equation we get
$\Rightarrow \int 2 \frac{\mathrm{dt}}{\mathrm{t}}$
$=\ln |\mathrm{t}|+\mathrm{c}$
But $t=\sqrt{x}+1$
$=2 \ln |\sqrt{x}+1|+c$